Optimal capacity of graded-response perceptrons

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

F eb 1 99 8 A canonical ensemble approach to graded - response perceptrons

Perceptrons with graded input-output relations and a limited output precision are studied within the Gardner–Derrida canonical ensemble approach. Soft non-negative error measures are introduced allowing for extended retrieval properties. In particular, the performance of these systems for a linear and quadratic error measure, corresponding to the perceptron respectively the adaline learning alg...

متن کامل

Optimal regularization of linear and nonlinear perceptrons

We derive an analytical formula for the generalization error of linear adaptive classifiers trained with weight decay. Analytical and experimental results are then presented to analyze the optimal value of regularization parameters as a function of the training set size.

متن کامل

Parallel strategy for optimal learning in perceptrons

Abstract. We developed a parallel strategy for learning optimally specific realizable rules by perceptrons, in an on-line learning scenario. Our result is a generalisation of the Caticha-Kinouchi (CK) algorithm developed for learning a perceptron with a synaptic vector drawn from a uniform distribution over the N -dimensional sphere, so called the typical case. Our method outperforms the CK alg...

متن کامل

Generalization and capacity of extensively large two-layered perceptrons.

The generalization ability and storage capacity of a treelike two-layered neural network with a number of hidden units scaling as the input dimension is examined. The mapping from the input to the hidden layer is via Boolean functions; the mapping from the hidden layer to the output is done by a perceptron. The analysis is within the replica framework where an order parameter characterizing the...

متن کامل

Optimal Properties of Analog Perceptrons with Excitatory Weights

The cerebellum is a brain structure which has been traditionally devoted to supervised learning. According to this theory, plasticity at the Parallel Fiber (PF) to Purkinje Cell (PC) synapses is guided by the Climbing fibers (CF), which encode an 'error signal'. Purkinje cells have thus been modeled as perceptrons, learning input/output binary associations. At maximal capacity, a perceptron wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and General

سال: 1993

ISSN: 0305-4470,1361-6447

DOI: 10.1088/0305-4470/26/13/019